

RADIOISOTOPE POWER SYSTEMS

Radioisotope Power Systems for Outer Planet SmallSats – Enceladus Express Mission Concept

Brian Bairstow

Systems Engineer, RPS Mission Analysis

Jet Propulsion Laboratory, California Institute of Technology

Young Lee, Joseph Riedel, Tom Spilker, Steven Oleson, Steven McCarty

2/27/2017

POWER TO EXPLORE

Rationale for RPS SmallSats

Need for affordable deep space missions

 NASA and Mission Community strongly desire smaller missions to more destinations for lower cost

Outer Planets SmallSats

- Spacecraft in the 100-500 kg mass range could lower mission costs while still performing significant science
- The challenges of exploration beyond Mars/Jupiter may not be feasible for SmallSats using solar arrays
 - Solar power in the outer solar system could require very large arrays, which in turn could require support from large spacecraft structures.
 - Thermal management in the outer solar system could be prohibitively powerexpensive.

RPS for SmallSats

- RPS can provide power and heat at any distance from the sun
- However, the mass and cost of currently available RPS present their own challenges

Enceladus Express - Executive Summary

- The study developed two concepts for Enceladus SmallSats in the 200-400 kg class
 - Enceladus was chosen due to its strong science draw and the applicability of RPS
 - Mission would include two nearly-identical (different only in the instrument payload) SmallSats launched together, each powered by a single MMRTG
 - Targeting NF cost category
- The study concluded that RPS Outer Planets SmallSats are feasible
 - Mission concepts closed mass and power budgets, and were relatively generic designs that could be adapted to other destinations
 - RPS lowers risk for Enceladus plume sampling mission
 - RPS enables aerocapture/gravity assist, which may be an enabling technology for exploring the gas giants with SmallSats

Science Objectives and Investigations

Platform types that could support the investigations

Enceladus Express Concept - Architectures

- Case 1: Conventional Chemical Saturn Orbit Insertion
 - 2 Earth and one Venus flybys for gravity assists
 - 1 km/s chemical burn for Saturn Orbit Insertion
 - Saturn close approach will require a close flyby through the ring system, between the F and G rings as Cassini has done
- Case 2: Aerogravity assist at Titan
 - Direct flight to Saturn (requiring a guided upper stage) with upper stage burn (e.g., a Star-48 guided upper stage)
 - Aerobraking and redirection at Titan (same guidance methodology as used by MSL at Mars)
 - Avoids passage through the ring system
 - Transit time shorter by ~2 years

Enceladus Express Concept – Case 1 Summary

- Mission: Two 450 kg RPS powered SmallSats capture at Saturn and fly through Enceladus plumes 24 times over two years
- Launcher: Atlas 401 to C3 16.8 km^2/s^2
- Science: Habitability and Life, Geoscience(~ 20 kg): Spectrometer, Radar, Imager: 70 Mb (30 Mb compressed) returned every month
- Power (~100W provided by single MMRTG)
 - Single MMRTG sufficient for science and comms (separately) by trickle charging batteries during long, 30 orbits
- Communications ~ 700 bps Ka-band assuming DSN (34 m)
- AD&CS (IMU, Sun sensors, Startrackers, Cold Gas RCS)
 - Science Collection mode: ~ monthly flyby, 1 hr at a time, 3 axis RCS pointing to 5° accuracy
 - Hibernation during transit: Spun stabilized (3 rpm) pointed to earth
- Propulsion (Hydrazine for all burns)
 - ~ 1 km/s
- C&DH: Radhard Power QUICC, data storage
- Mechanical: Thrust tube design, dual launch platform
- Cost: Dual launch meets New Frontiers cost cap (~ \$710M)

Enceladus Express Concept - External Components

Power Requirements

- Single MMRTG would provide power to spacecraft: 118 watts@
 BOL with a degradation rate of 4.0%
- During Communication Phase the spacecraft requires 146 watts
- MMRTG is providing 44 watts (after losses to bus)-
 - Deficit of 102 watts
- Strategy use batteries to provide additional power during high power communication phase and recharge during 30 day orbit
- Worst case (greatest energy storage) occurs during Communication
 Phase at Year 11
- 30 day orbit period consists of
 - Flyby and data acquisition (~35 w-hr defecit)
 - Short duration recharge for flyby (~60 minutes)
 - 8 hour communication to earth (~560 w-hr deficit)
 - Recharge of Battery (~104 hours -4.33 days)
 - Repeat comm/recharge cycle 1 more times

Case 1 Mission Cost

- Total mission cost with 2 SmallSats is within NF Cost Cap
- Uses RPS cost values from the NF 4 AO released on 12/9/2016
- Note this cost is missing Science A-D cost; was not estimated by study

Mission Cost Summary			
		FY 16\$M	
Phase A		12	
1.0	Program Management	38	
2.0	Systems Engineering	47	
3.0	Safety & Mission Assurance	18	
4.0	Science	0	
5.0	Payload	89	
6.0	Spacecraft	290	
6.1	SmallSat A	154	
6.2	SmallSat B	42	
6.3	Total RPS-Related Cost	94	
7.0	Mission Operations (LOOS Only)	12	
8.0	Launch Vehicle/Services	13	
8.2	Launch Deck	13	
9.0	Ground System	19	
10.0	Systems Integration & Testing	31	
11.0	Education & Public Outreach	2	
Total M	571		
Reserve	143		
Total Co	714		

Case 2 Aerogravity Assist Rough Strawman

- Aerocapture: MSL/Huygens-like architecture (using MSL (or HEEET) shell)
- Science: Same as Case 1
- AD&CS: Startrackers look out of back shell
- Propulsion: Same RCS as Case1 (directions may be limited), vastly lower propellant load than Case 1
 - Hole in backshell to fire RCS during aerogravity assist
- C&DH: Added controls for Aeroshell separation and petals and flyby control
- Thermal:
 - Smaller bus than Case 1
 - Added aeroshell and backshell
 - Water cooling using 3-5 kg water (in tank inside S/C, with pump)
- Mechanical
 - Smaller bus than chemical s/c
 - Spider holding frame to launch platform

1.6 m Huygens Heatshield

Case 2 Launch Configuration

Top-Level Case Comparison

Parameter	Case 1 Monoprop	Case 2 Aerogravity Assist
Launch/Arrival Date	VEEGA 2025/2035	Direct 2026/2031
Launcher	Atlas 401 (w 50% margin): free for NF	Atlas 551/Star 48: Adds \$85M
S/C Mass	250 kg dry [~200 kg propellant]	210 kg dry (includes 26 kg aerosystem) [~30 kg propellant]
Mission Cost	~\$710M	~\$830M
Readiness	Off-the-shelf	Aerogravity assist system needs adaptation from Mars case
Operations	11 year cruise / 2 yr science (~\$20M add'l cruise cost)	5 year cruise / 1 yr science
Science Complete	2038	2036
Pros	Lower cost	Much shorter cruise and science phase, 2 year earlier science.
Cons	Longer cruise/ops (13 yrs), 2 year later science, Earth flybys (w/ RPS), Risky Saturn flyby (inside rings)	More expensive launcher, aerogravity maneuver (same as MSL), more complex/expensive S/C with aerosystem?

Comparison with Past 'Small' Interplanetary Spacecraft

- New Horizons (~\$700M): Wet 478 kg / Dry 401 kg / MonoProp 77 kg
 Payload 30 kg / 200 W_e power @ 9 years (LV: Atlas 551 with a Star48)
- Grail (~\$500M): 2 spacecraft each Wet 307 kg/ Dry 201 kg/ MonoPropellant 106 kg / 700 W_e power
- LADEE (\$280M): Wet 383 kg / Dry 248 kg / Payload 20 kg / 135kg Propellant (biprop) / ~100 W_e power
- Enceladus Express Case 1 (~\$700M): 2 spacecraft each Wet ~450 kg / Dry ~250 kg / ~100 W_e power
- Enceladus Express Case 2 (~\$800M): 2 spacecraft each Wet ~250 kg / Dry ~200 kg / ~100 W_e power

New Horizons

Grail

Enceladus Express

Technical and Cost Lessons Learned (1)

- A single MMRTG does have sufficient power for a SmallSat IF major events (<day) (science, propulsion, communications) can be supplemented using trickle charged battery power (charged during long periods of non-events ~ 10s of days)
 - Enabled by the Spacecraft 'low-power' mode
- A single MMRTG powered spacecraft, even carrying significant ΔV (~ 1 km/s) and 20 kg of science instrumentation, fits in the SmallSat class (<500 kg)
- Launching two identical, zero fault-tolerant spacecraft provides a method of risk reduction for flybys through Enceladus' plumes
 - An alternative approach using two MMRTGs on one single fault-tolerant spacecraft may or may not provide a cheaper alternative – further work is needed
 - However, a larger dual-string s/c would no longer be a strawman SmallSat solution for other missions

Technical and Cost Lessons Learned (2)

- An approach using aerogravity assist can reduce propellant mass dramatically on the SmallSat but requires an aeroshell system and added risks
 - Aerogravity assist vehicle also delivers science ~1-2 years earlier but costs more, costs that are at least in part compensated by a much reduced mission length
 - This analysis needs further refinement

Study RPS Findings

- RPS SmallSats of 250-500 kg were shown to be feasible.
 - MMRTG can meet the requirements for the mission profile during its 11 year duration
- Spacecraft had EOM power needs of 33 W_e in low-power recharge mode.
 - Small variations in minimum power phase (i.e battery recharge) can lead to greatly increased recharge time
 - Increasing min spacecraft power to 41 W_e prevents power system from closing
- The designed SmallSat concepts were constrained in both mass and power.
 - Mass, dimensions, and cost of the power system pushed the design away from CubeSat to larger, traditional spacecraft components.
 - The high propellant masses and large tank for conventional propulsion made a spacecraft design centered around the MMRTG impractical.
- Use of advanced, smaller RPS could make these mission concepts more compelling since the mass and power degradation of MMRTG became a challenge.
 - If the MMRTG degradation rate is increased from 4% to 5%, the mission doesn't close
 - Higher power would enable higher data return, and lower risk in low power modes
- An REP architecture was investigated, but study determined that spacecraft could not produce enough thrust for EP with one MMRTG
 - REP, if feasible, could lead to lower propellant mass, smaller propellant tanks, and a smaller spacecraft bus

Conclusions

- Currently available RPS systems (MMRTGs) and their potential improved version (eMMRTGS) are potentially enabling for a wide range of very aggressive but yet economical SmallSat science missions into the outer solar system
 - As a result, mission designers today can propose small, economical but scientifically important science missions that would be otherwise impossible without RPS
- Enceladus was chosen as a study target because of its very intriguing internal dynamics that are incongruously and mysteriously keeping an internal ocean active and even venting liquid water – offering the opportunity to test for life processes without landing
 - RPS would keep an Enceladus mission small and lightweight, able to traverse the plumes with low risk compared to solar-powered missions
 - The mission design is applicable as a generic platform for a wider range of outer planets SmallSats
 - Two forms of this mission were studied, a conventional SOI mission (Case 1), and a lower mass aerogravity assist option (Case 2)
 - If Atlas is unavailable, the Falcon Heavy could economically carry both of these cases on ESPA-Grande accommodation
 - For Case 2 (aerogravity assist), the spacecraft could fit inside the adapter ring
 - Both cases potentially fit into the NF cost cap
- Substantial improved performance of current RPS with similar or less mass but higher specific power could enable an REP version of the Enceladus Express SmallSat mission concept, but with a lower spacecraft mass (e.g. 100-200 kg fully loaded)
 - Such a spacecraft would have powerful applicability to a wide range of outer Solar System missions

Questions?

